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Abstract

This paper investigates the relationship between climate change and income inequality,
recognizing that the economic impacts of climate change are not uniform across different
levels of income within and across countries. Using methods from the existing literature on
climate and economic growth, we analyze the economic impact of rising temperatures by
within-country income decile. Our findings suggest that climate change disproportionately
affects the poorer segments of the population within countries, even after accounting for a
country’s ability to adapt to climate impacts, while the richest suffer the lowest damages. In
a Reference scenario without additional climate action (3.1°C warming), we estimate that
climate impacts could lead to an increase of the Gini index by up to six points, notably in
Sub-Saharan Africa. Globally, we estimate that around three-quarters of the total variation
in climate impacts is due to between-country heterogeneity, and one-quarter is due to within-
country inequality. We project damages to 2100 through the RICE50+ model and estimate
the income elasticity of damages within countries. Our estimates indicate that the total eco-
nomic impact of climate change is regressive, with an income elasticity of damages of 0.72
under our preferred specification. We find climate impacts to be especially regressive in
poorer and hotter countries. While global damages are sensitive to the functional form of
the damage function, the estimated income elasticity parameter is robust across different
specifications.

Keywords: Climate change, climate damages, climate impacts, inequality, panel regres-
sion, vulnerability

JEL codes: O11 O44 Q54 Q56
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1 Introduction

It is by now a scientific consensus that climate change has and will significantly impact so-
cieties and economies worldwide. Some notable examples include the impact of climate
change on economic growth (Burke et al., 2015; Newell et al., 2018; Dell et al., 2012), an-
nual income (Deryugina and Hsiang, 2014), labor productivity and supply (Graff Zivin and
Neidell, 2014), human capital (Graff Zivin et al., 2018), demography (Casey et al., 2019),
migration (Cattaneo et al., 2019; Desmet and Rossi-Hansberg, 2015), food security (De-
schênes and Greenstone, 2007), and energy consumption (De Cian and Wing, 2019; Isaac
and Van Vuuren, 2009).

Climate change is expected to have heterogeneous impacts in space and among house-
holds with different income levels, occupations, and consumption patterns, among other
characteristics. Such heterogeneity will also affect the degree of inequality both within and
between countries. Specifically, climate change may exacerbate between-country inequal-
ity (Diffenbaugh and Burke, 2019) by causing heat-related impacts that disproportionately
affect low-income countries (Taconet et al., 2020). This vulnerability is generally linked to
the geographic location of low-income countries in low latitudes with hotter temperatures
(Mendelsohn et al., 2006).

Within countries, the effects of climate change are also expected to differ across house-
holds. For example, small-scale farmers in developing countries have limited means to adapt
to climate change (see, e.g., Cohen and Dechezleprêtre (2022) for the higher vulnerability of
poorer households to mortality impacts), making them more vulnerable to droughts, floods,
and other disasters exacerbated by global warming. This vulnerability can lead to food inse-
curity, poverty, displacement, and widening the economic gap between rich and poor. Un-
der credit constraints, temperature shocks can hinder efficient labor reallocation (Liu et al.,
2023). Additionally, climate change can cause natural disasters and health risks that dispro-
portionately affect populations already living in poverty and inequality, further exacerbating
existing disparities.

However, at the global or national level, only limited evidence has been found on within-
country inequality and its link to weather and climate. A few exceptions include studies
focusing on Vietnam (de Laubier Longuet Marx et al., 2019) and India (Sedova et al., 2019).
Therefore, the extent to which the impact of temperature change on inequality holds within
different countries remains unclear. Higher vulnerability to climate change in developing
countries translates to greater inequality, while the impact on income distribution in devel-
oped countries is less pronounced (Cevik and Jalles, 2023). Indeed, climate change could

3

Electronic copy available at: https://ssrn.com/abstract=4520461



increase inequality between and within communities (Hsiang et al., 2019). Preliminary evi-
dence suggests that global warming could lead to an increase in within-country inequality as
measured by the Gini index (Malpede and Percoco, 2021; Dasgupta et al., 2020; Paglialunga
et al., 2022).

This study aims at contributing to the existing literature by analyzing the impact of cli-
mate change on income inequality within countries in a novel way. Unlike previous studies
such as Diffenbaugh and Burke (2019), which focus on between-country inequality, we pro-
vide an explicit and direct measure of income inequality within countries through income
deciles. We estimate three different climate impact functions using decile-level economic
data and country-level climate data to study the economic consequences of climate change
on the within-country income distribution.1

We show that, although the choice of damage function strongly influences global pro-
jected impacts, the distributional consequences of climate impacts are consistently projected
to be regressive within countries, across all three damage function specifications. Specifi-
cally, the poorest individuals within countries (those in the first decile of the income distri-
bution) are projected to suffer the most severe economic impacts of climate change. We find
that the vulnerability to rising temperatures decreases almost monotonically across income
deciles within countries. Moreover, in line with the existing literature, we find that most cli-
mate damages will be concentrated in the hotter and poorer regions of the world so that those
most affected by climate change will be the poorest between and within countries. Under our
preferred econometric specification for the damage function, the within-country variation of
climate damages accounts for almost 24% of the variance of total damages by 2100, with the
remaining 76% explained by variation in damages across countries.

In addition, we estimate the global income elasticity of damages, which has significant
implications for the Social Cost of Carbon (Dennig et al., 2015). This value is estimated
between 0.69 and 0.84 for the three impact functions, is stable over time, but also shows
significant heterogeneity across countries. In particular, we find that the elasticity is lower
in richer and colder countries, implying a more regressive distribution of projected climate
impacts in those countries.

We first present the empirical strategy to estimate the impact functions by income decile.
After describing the data in Section 3, we present the results in Section 4. The following
sections discuss the projected damages until 2100 (Section 5) and the income elasticity of

1We estimate the impact functions of Burke et al. (2015), Kalkuhl and Wenz (2020), and Jiao et al. (2021),
as detailed below.
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climate damages (Section 6), followed by the conclusions in Section 7.

2 Empirical strategy

We estimate three different impact functions from the climate econometrics literature to study
the effect of weather variables (annual temperature and precipitation) on the growth of in-
come across income deciles within countries. Given the existing uncertainty regarding the
most appropriate specification and the importance for climate damage projections, as high-
lighted in Newell et al. (2021), we consider multiple impact functions specification. These
three impact functions build on Burke et al. (2015), Kalkuhl and Wenz (2020) and Jiao et
al. (2021), respectively. We estimate them separately for each decile 𝑞 = 1, ..., 10 of the
(within-country) net income distribution. We model the growth in the income of each decile
as a function of annual mean temperature, annual cumulative precipitation, and other covari-
ates, which include the usual fixed effects by country and year, as well as country-specific
trends. We further include among the covariates one lag of the dependent variable, as in
Pretis et al. (2018), to better account for the dynamics of income by decile and better isolate
the effects of temperature. Note that with the large time dimension in our data (𝑇 ≈ 55)
the usual bias on the lagged dependent variable coefficient in fixed effect models becomes
negligible.

The impact function from Burke et al. (2015) (henceforth BHM) allows for a non-linear
relation between temperature and output growth through the use of quadratic terms so that
a marginal increase in temperature may have a differential effect in countries with different
climates. At the same time, this specification implicitly assumes that countries’ response to
temperature changes only depends on their initial temperature levels and not on other factors.
Formally:

Δ𝑦𝑞𝑖𝑡 = Δ𝑦𝑞𝑖𝑡−1 + 𝛽𝑞
1𝑇 𝑒𝑚𝑝𝑖𝑡 + 𝛽𝑞

2𝑇 𝑒𝑚𝑝
2
𝑖𝑡 + 𝛾𝑞1𝑃𝑟𝑒𝑐𝑖𝑡 + 𝛾𝑞2𝑃𝑟𝑒𝑐

2
𝑖𝑡 + 𝛼𝑖 + 𝜃𝑡 + 𝜁𝑖𝑡 + 𝜁𝑖𝑡

2 + 𝜖𝑖𝑡 (1)
with 𝑖 and 𝑡 indexing country and year, respectively. 𝑦𝑖𝑡 is the real per capita income of
decile 𝑞 in logarithm. We define decile income as the decile share multiplied by real per
capita GDP. Δ is the first-difference operator, 𝑇 𝑒𝑚𝑝𝑖𝑡 is the annual average temperature, and
𝑃𝑟𝑒𝑐𝑖𝑡 is annual cumulative precipitation2, 𝛼𝑖 and 𝜃𝑡 are country- and year-fixed effects, 𝜁𝑖𝑡

2Whereas Kotz et al. (2022) also include extreme indices of climate in the framework of Kalkuhl and Wenz
(2020), their results suggest that the largest part of impacts can indeed be captured by annual mean temperature.
Hence we focus on these aggregate values here.
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and 𝜁𝑖𝑡2 are linear and quadratic country-specific time trends.
The impact function from Kalkuhl and Wenz (2020)3 (henceforth KW) for the decile 𝑞

is:

Δ𝑦𝑞𝑖𝑡 = Δ𝑦𝑞𝑖𝑡−1+𝛽
𝑞
0Δ𝑇 𝑒𝑚𝑝𝑖𝑡+𝛽

𝑞
1Δ𝑇 𝑒𝑚𝑝𝑖𝑡−1+𝛽

𝑞
2Δ𝑇 𝑒𝑚𝑝𝑖𝑡 ∗ 𝑇 𝑒𝑚𝑝𝑖𝑡−1+𝛽

𝑞
3Δ𝑇 𝑒𝑚𝑝𝑖𝑡−1 ∗ 𝑇 𝑒𝑚𝑝𝑖𝑡−1

+ 𝜆𝑞0Δ𝑃𝑟𝑒𝑐𝑖𝑡 + 𝜆𝑞1Δ𝑃𝑟𝑒𝑐𝑖𝑡−1 + 𝜆𝑞2Δ𝑃𝑟𝑒𝑐𝑖𝑡 ∗ 𝑃𝑟𝑒𝑐𝑖𝑡−1 + 𝜆𝑞3Δ𝑃𝑟𝑒𝑐𝑖𝑡−1 ∗ 𝑃𝑟𝑒𝑐𝑖𝑡−1
+ 𝜙𝑞

1𝑃𝑟𝑒𝑐𝑖𝑡−1 + 𝜙𝑞
2𝑃𝑟𝑒𝑐

2
𝑖𝑡−1 + 𝜁 𝑞1𝑇 𝑒𝑚𝑝𝑖𝑡−1 + 𝜁 𝑞2𝑇 𝑒𝑚𝑝

2
𝑖𝑡−1 + 𝛼𝑖 + 𝜃𝑡 + 𝛿𝑖𝑡 + 𝜖𝑖𝑡 (2)

As in BHM, this modeling choice allows for heterogeneous impacts of temperature shocks
across different climates without additional forms of heterogeneity. Moreover, it allows
weather variables to have both a level effect on aggregate output from the terms in first dif-
ference (i.e. a temporary effect on the growth rate of output) and a growth effect from the
terms in levels (i.e. a permanent effect on the growth rate of output).

Next, we consider the possibility that income alters the responsiveness of growth to the
local climate, as in Jiao et al. (2021). By observing damages from temperature shocks, we
can infer that adaptation to climate shocks is costly. It follows that higher income relaxes the
budget constraint under which economic agents undertake the optimal adaptation decision.
Hence, the richer an agent is, the more they can invest in adaptation to insulate themselves
from climate impacts. This simple theoretical hypothesis guides the empirical specification
of the impact function, which allows for income-driven adaptation. In an extension of Burke
et al. (2015), we interact each term of the quadratic functions of temperature and precip-
itations with 𝑦𝑖𝑡−1, the lagged country-level log of GDP per capita of country 𝑖. This can
capture private adaptive capacity, allowing investment into proactive or reactive adaptation
measures, but also public adaptation measures. We refer to this model specification as BHM-
Adaptation. This is our preferred specification and the one we focus on when presenting our
main results in sections 4 and 5, while showing that the main takeaways regarding the distri-
butional consequences of projected climate impacts are robust to the choice of the damage
function.

Δ𝑦𝑞𝑖𝑡 = Δ𝑦𝑞𝑖𝑡−1+ 𝑇 𝑒𝑚𝑝𝑖𝑡(𝛽
𝑞
1 + 𝛽𝑞

3𝑦𝑖𝑡−1) + 𝑇 𝑒𝑚𝑝2𝑖𝑡(𝛽
𝑞
2 + 𝛽𝑞

4𝑦𝑖𝑡−1) + 𝑃𝑟𝑒𝑐𝑖𝑡(𝛾
𝑞
1 + 𝛾𝑞3𝑦𝑖𝑡−1) (3)

+ 𝑃𝑟𝑒𝑐2𝑖𝑡(𝛾
𝑞
2 + 𝛾𝑞4𝑦𝑖𝑡−1) + 𝛼𝑖 + 𝜆𝑡 + 𝛿𝑖𝑡 + 𝜖𝑖𝑡

3We consider column (5) from Table 4 in Kalkuhl and Wenz (2020), as this is indicated as the preferred
panel specification in the paper and the one used for climate impact projections
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The hypothesis is that income mitigates damages caused by deviations from the optimal
temperature, and we expect that 𝛽3 and 𝛽4 have opposite signs to 𝛽1 and 𝛽2, respectively.
Given that GDP per capita is always positive, the higher a country’s average income is, the
flatter its temperature response function will be, and vice versa.

Hence, this reduced-form specification can capture, for example, the kind of adaptation
that takes place by re-allocating production to sectors that are less exposed to the negative im-
pacts on the productivity of higher temperatures (see e.g. Somanathan et al. (2021)) or with
investment in protective technologies such as air conditioning (Barreca et al., 2015). This
extension of the polynomial damage function specification allowing for income-driven adap-
tation follows Carleton et al. (2022), who apply a similar strategy to the mortality impacts
of daily temperatures 4. Jiao et al. (2021) show how outlier observations in the dependent
variable of interest can distort OLS coefficients because some identifying variation in the
dependent variable may be erroneously attributed to variation in the climate variables of in-
terest, thus biasing the coefficients on those variables, despite the presence of fixed effects
and other controls. Because of this, we present in Section A.1, results for the decile-level
BHM-adaptation damage function estimated with OLS dropping the top and bottom 1% of
outliers, as well as using the Impulse Indicator Saturation (IIS) estimator proposed in Santos
et al. (2008). The sign and size of the coefficients are robust, but come at a cost in precision,
especially for the lower deciles, leading us to rely on the full-sample results when presenting
the projected distributional consequences of climate impacts.

In addition to the decile-level damage functions, we estimate the country-level corre-
sponding functions, with the same explanatory variables and where the dependent variable
is Δ𝑦𝑖𝑡, the growth of real per capita GDP in country 𝑖 and year 𝑡.

To summarise, we estimate a separate set of coefficients for each income decile. We
evaluate how the 10 deciles of the distribution of net income distribution respond to the same
country-level variations in annual temperature. The distributional consequences of climate
change within each country will then depend on the relative slopes of the impact function
for the 10 deciles. Income inequality will worsen as a result of climate change if the impact
functions for lower deciles, evaluated at the country’s current climate, have a steeper negative
slope than the upper deciles of the income distribution, and vice versa. When presenting our
decile-level results on the impact of temperatures on decile income growth in 4 and 5, we
focus especially on the findings from the estimation of Equation 3. In Section 6 we show

4We show in Section A.1 in section A.1 that our results are robust to considering the average per capita
GDP over the sample period, a rolling average of 10 or 15 years for 𝑦̄𝑖, as well as to excluding precipitation
controls or allowing for quadratic trends.
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that our main findings on the distribution of climate impacts within countries hold across all
three impact function specifications from the literature.

3 Data

Table 1 presents the summary statistics of the variables we use for our empirical specifi-
cations. For estimating the GDP-level damage functions, we use country-level annual data
on GDP per capita in constant US-$[2015] from the World Bank’s Development Indicators
and population-weighted annual weather data on average temperature and precipitation from
the Climate Research Unit at the University of East Anglia. We aggregate monthly average
temperature and precipitation at the 0.5° grid-cell level with weights coming from the popu-
lation density 0.5° grid-cell level data from the SocioEconomic Data and Applications Center
(SEDAC) at Columbia University, accounting for cells that are only partially covered by a
country’s borders and for the area extent of each pixel. This is done computing the weights
𝑤 for each grid cell belonging to a country according to the formula 𝑤𝑗,𝑖 = 𝑐𝑗,𝑖 ∗ 𝑎𝑗,𝑖 ∗ 𝑝𝑗,𝑖,
where 𝑐𝑖 is the fraction of the cell 𝑗 that falls within country 𝑖’s borders, 𝑎𝑗,𝑖 is the area in km
covered by the grid-cell (this changes across latitudes) and 𝑝𝑗,𝑖 is the population count/km
in the cell. The monthly series are then aggregated to the annual level in order to match the
macroeconomic indicators.

For the inequality data based on deciles, given the strongly unbalanced nature of the
panel dataset on income deciles of the well-known WIID data, we relied on a recently re-
leased dataset by Narayan et al. (2023a), who created a full dataset suitable for panel data
analysis. The authors combine publicly available data on the deciles of the within-country
distribution of net income (post-tax, disposable) from the UNU Wider World Income In-
equality Database (WIID), with data on deciles for consumption and country-level Gini data
from the World Bank’s World Development Indicators. In short, they impute the missing
values for income deciles with the predicted values coming from (1) consumption data when
available (predicted through OLS), and (2) Gini data through Principal Component Analy-
sis. Finally, we compute the level of average income by decile combining each decile’s share
with the average GDP per capita. The analysis is performed on unbalanced data (because of
missing Gini or GDP data) from 1960 at the earliest to 2015 at the latest.

For the projection of climate impacts, we compare projected per-capita GDP under com-
bined Shared Socioeconomic Pathways (SSPs) for socioeconomic variables (Population and
GDP Riahi et al. (2017)) and Representative Concentration Pathways (RCPs) for country-
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name mean min max sd
1 Log(GDP pc) 8.20 5.11 11.63 1.43
2 GDP pc growth 0.02 -1.03 0.68 0.06
3 1st decile, share in % 2.21 0.00 5.36 0.98
4 2nd decile 3.66 0.18 7.21 1.30
5 3rd decile 4.67 0.21 8.07 1.40
6 4th decile 5.66 0.56 8.96 1.42
7 5th decile 6.71 1.58 9.82 1.38
8 6th decile 7.92 2.44 10.78 1.29
9 7th decile 9.47 4.05 12.50 1.11

10 8th decile 11.66 6.17 14.64 0.83
11 9th decile 15.41 10.85 19.49 0.86
12 10th decile 32.70 13.74 70.95 8.89
13 Annual temperature (°C) 18.02 -3.47 29.98 7.68
14 Annual precipitation (mm) 91.22 0.83 356.52 55.93

Table 1: Summary statistics

level climate variables. In particular, we use as a reference the combined SSP3 and RCP 7.0
scenario ("SSP3-7.0"), which in CMIP6 has often been referred to as a scenario compatible
with a range of business-as-usual trajectories without additional climate policy strengthen-
ing. We compare this scenario without climate impacts to the same projected per-capita GDP
after we apply the impacts of temperature increases. The impacts are based on the estimated
coefficients from the damage functions. Since the regression coefficients are imprecisely es-
timated and future projections for precipitation are not reliable, we focus our analysis on the
effects of temperature, consistently with the existing literature.

To create our baseline scenario under SSP3 with no climate impacts, we use the RICE50+
model, described in detail in Gazzotti (2022), in simulation mode. The model is an extension
of Nordhaus’s seminal DICE model Nordhaus (2017) and features 154 countries. Tempera-
ture is downscaled to the country level based on the CMIP6 model ensemble (Eyring et al.,
2016). The model includes projections for total GDP and population at the country level as
well as projections on decile-level income, depending on the SSP scenario. The main sce-
nario we consider when presenting our results sees GDP growing under the SSP3 scenario
and temperatures increasing according to the high-emission RCP 7.0 scenario. The global
average increase in surface temperature is around 3.1 °C by 2100 under this scenario relative
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to the average in the period from 1995 to 2015, according to the MAGICC climate model.

4 Empirical results

Estimates from Equation 3 confirm that national income plays a crucial role in reducing
vulnerability to deviations from the typical temperature. The estimated coefficients are pre-
sented in Table 2. Notably, two key factors contribute to larger damages in lower-income
countries.

Firstly, their damage function exhibits a steeper curve. This implies that as tempera-
tures deviate from the optimal level in a warming world, marginal damages grow faster in
poorer countries. An inverted-U damage function, consistently with previous studies (e.g.,
Burke et al. (2015)), becomes less pronounced as GDP increases. This reduced sensitiv-
ity of economic growth between countries results from the interaction terms of lagged in-
come with linear and quadratic temperature, with these terms exhibiting opposite signs of
the non-interacted temperature terms for all deciles. To illustrate this, Figure 1 displays the
decile-level and country-level damage functions at various income levels for a hypothetical
low-income country (25th percentile of per capita GDP observations in the sample, 1300
USD), a middle-income country (50th percentile, 3463 USD), and a high-income country
(75th percentile, 12968 USD). For clarity, we fix these three income levels for visualization
purposes, presenting how the damage function evolves as a third variable (GDP per capita)
changes. Confidence intervals are excluded in the figure for visual clarity, and they are re-
ported in Figure A.1 in the Appendix.

Secondly, current temperatures are already farther above the optimal temperature in poorer
countries than they are in richer countries. The optimal temperature estimated from the
decile-level regressions across income levels of countries is around 18°C (although it varies
slightly across deciles), higher than the optimal levels of Burke et al. (2015) (13°C) and
Kalkuhl and Wenz (2020) (5°C). Low-income countries are on average warmer such that,
assuming quadratic damage functions, a marginal increase in temperatures leads to larger
losses in output growth.

Hence, as evidenced by the sign and significance of the interaction terms in Table 2,
higher real per capita GDP reduces the sensitivity of income growth to changes in tempera-
ture for all deciles, across countries. This implies that households in richer countries are less
vulnerable to climate shocks ceteris paribus, including the current climate.

Looking within countries, the damage functions of Figure 1 implied by the coefficients of
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Table 2, show that the income of poorer households is more responsive to changes in temper-
ature than the relatively richer households. In particular, they tend to see stronger reductions
in income when experiencing temperature shocks in those countries that are characterized
by relatively hot climates. In addition to this, we also see that the responsiveness to temper-
ature appears to decrease almost monotonically across income deciles, so that a household
in a given decile will tend to see lower damages (or benefits) from rising temperature than a
household in the preceding decile. Moreover, this pattern holds across different country-level
income levels (per capita GDP).

The pattern by which the poorer deciles tend to suffer larger damages from rising tem-
peratures than the richer deciles within the same countries, together with the temperature
projections, is the key result underpinning our findings on the distributional consequences
of climate change impacts in Sections 5 and 6.

To summarise, climate damages are greater for poorer individuals in both low- and high-
income countries. In particular, the first (poorest) decile tends to be significantly more vul-
nerable than the rest of society. As projections of damages in Section 5 make it more clear,
income moderates damages within countries, and climate change is projected to increase
inequalities both within and between countries (Diffenbaugh and Burke, 2019).

11

Electronic copy available at: https://ssrn.com/abstract=4520461



Ta
ble

2:
Da

ma
ge

fun
cti

on
s,w

ith
BH

M-
ada

pta
tio

n

De
pen

den
tV

ari
abl

es:
De

cil
ein

com
eg

row
th

GD
Pp

cg
row

th
Mo

del
:

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10

)
(11

)
Va

ri
ab

le
s

Te
mp

era
tur

e
0.1

65
7∗∗

∗
0.1

39
0∗∗

∗
0.1

37
5∗∗

∗
0.1

35
6∗∗

∗
0.1

30
4∗∗

∗
0.1

28
1∗∗

∗
0.1

27
5∗∗

∗
0.1

28
8∗∗

∗
0.1

27
8∗∗

∗
0.1

18
0∗∗

∗
0.1

32
6∗∗

∗

(0.
06

21
)

(0.
03

99
)

(0.
03

52
)

(0.
03

17
)

(0.
02

87
)

(0.
02

68
)

(0.
02

52
)

(0.
02

38
)

(0.
02

27
)

(0.
02

37
)

(0.
02

34
)

Te
mp

era
tur

e,S
qua

red
-0.

00
45

∗∗
-0.

00
32

∗∗
-0.

00
33

∗∗
∗
-0.

00
33

∗∗
∗
-0.

00
32

∗∗
∗
-0.

00
31

∗∗
∗

-0.
00

31
∗∗

∗
-0.

00
31

∗∗
∗

-0.
00

31
∗∗

∗
-0.

00
28

∗∗
∗

-0.
00

32
∗∗

∗

(0.
00

21
)

(0.
00

14
)

(0.
00

12
)

(0.
00

11
)

(0.
00

09
)

(0.
00

09
)

(0.
00

08
)

(0.
00

08
)

(0.
00

07
)

(0.
00

08
)

(0.
00

07
)

Te
mp

era
tur

eX
GD

P(𝑡
−
1)

-0.
01

52
∗∗

-0.
01

24
∗∗

∗
-0.

01
26

∗∗
∗
-0.

01
24

∗∗
∗
-0.

01
22

∗∗
∗
-0.

01
20

∗∗
∗

-0.
01

20
∗∗

∗
-0.

01
22

∗∗
∗

-0.
01

21
∗∗

∗
-0.

01
07

∗∗
∗

-0.
01

25
∗∗

∗

(0.
00

63
)

(0.
00

40
)

(0.
00

36
)

(0.
00

32
)

(0.
00

30
)

(0.
00

28
)

(0.
00

26
)

(0.
00

25
)

(0.
00

24
)

(0.
00

26
)

(0.
00

25
)

Te
mp

era
tur

eS
q.

XG
DP

(𝑡−
1)

0.0
00

4∗
0.0

00
3∗

0.0
00

3∗∗
0.0

00
3∗∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

0.0
00

3∗∗
∗

(0.
00

02
)

(0.
00

02
)

(0.
00

01
)

(0.
00

01
)

(0.
00

01
)

(0.
00

01
)(

9.
43

×
10

−
5 )(

8.
9
×
10

−
5 )(

8.
59

×
10

−
5 )(

9.
57

×
10

−
5 )

(8.
65

×
10

−
5 )

Fi
xe

d-
eff

ec
ts

Co
un

try
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

ar
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Va

ry
in

g
Sl

op
es

Ye
ar

(C
ou

ntr
y)

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fi
ts

ta
tis

tic
s

Ob
ser

vat
ion

s
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,5

51
5,6

36
R2

0.0
94

30
0.0

97
04

0.1
09

28
0.1

33
40

0.1
69

73
0.2

03
11

0.2
42

98
0.2

76
02

0.2
73

32
0.1

49
26

0.3
04

89
Wi

thi
nR

2
0.0

63
57

0.0
21

77
0.0

23
27

0.0
30

68
0.0

36
92

0.0
49

02
0.0

68
88

0.0
88

96
0.0

83
65

0.0
48

45
0.1

14
86

C
lu

ste
re

d
(C

ou
nt

ry
)s

ta
nd

ar
d-

er
ro

rs
in

pa
re

nt
he

se
s

Si
gn

if.
C

od
es

:
**

*:
0.

01
,*

*:
0.

05
,*

:
0.

1
No

te:
Re

gre
ssi

on
so

fd
eci

lei
nco

me
gro

wt
h(

col
um

ns
1t

hro
ug

h1
0)

and
GD

Pp
er

cap
ita

gro
wt

h(
col

um
n1

1)
on

af
un

cti
on

of
tem

per
atu

re
and

inc
om

e.
Al

lre
gre

ssi
on

sa
lso

inc
lud

e
pre

cip
ita

tio
n,

squ
are

dp
rec

ipi
tat

ion
,an

dt
hei

rin
ter

act
ion

wi
th

lag
ged

inc
om

ele
vel

s.

12

Electronic copy available at: https://ssrn.com/abstract=4520461



Fig
ure

1:
Da

ma
ge

fun
cti

on
sa

tth
ed

eci
lel

eve
l.D

1
toD

10
ind

ica
ted

eci
les

fro
mt

he
po

ore
stt

oth
eri

che
st.

G
D

P
ind

ica
tes

the
cou

ntr
y-

lev
eld

am
age

fun
cti

on
s.D

eci
le-

lev
eld

am
age

fun
cti

on
sw

ith
inc

om
e-d

riv
en

ada
pta

tio
nf

or
thr

ee
sel

ect
ed

cou
ntr

ies
atd

iffe
ren

tle
vel

s
of

inc
om

e.
Th

es
hap

eo
fth

ef
un

cti
on

var
ies

wi
th

the
inc

om
el

eve
lb

oth
wi

thi
na

nd
bet

we
en

cou
ntr

ies
.C

on
fid

enc
ei

nte
rva

lsh
ave

bee
no

mi
tte

df
or

vis
ual

cla
rity

;th
ey

are
rep

ort
ed

in
Fig

ure
A.1

in
the

Ap
pen

dix
.L

ow
in

co
m

e:
25

th
per

cen
tile

of
the

GD
Pp

er
cap

ita
dis

trib
uti

on
int

he
sam

ple
,1,

30
0U

SD
per

cap
ita

.M
id

dl
ei

nc
om

e:
50

th
per

cen
tile

,3,
46

3U
SD

.H
ig

h
in

co
m

e:
75

th
per

cen
tile

,12
,96

8
US

D.

13

Electronic copy available at: https://ssrn.com/abstract=4520461



5 Projected distributional impacts

We next explore the distributional impacts of climate damages and the mitigating potential
of income through the end of the century using the projected trajectories of temperature,
population, and GDP of the RICE50+ model, described in detail in Gazzotti (2022). The
model is an extension of Nordhaus’s seminal DICE model (Nordhaus, 2017) and features by
default 57, but up to 160 countries or regions. Temperature is downscaled to the regional
level based on the CMIP6 model ensemble. From the model, we extract projections for total
GDP and population at the regional level, combining them with projections on decile-level
income for different SSP scenarios available from Narayan et al. (2023b).

To create our baseline scenario with no climate impacts, we let income of decile 𝑞 in year
𝑡 and country 𝑖 evolve according to:

𝑦𝑞𝑖𝑡 = (1 + 𝑔𝑞𝑖𝑡 )𝑦
𝑞
𝑖𝑡−1

where 𝑔 is the counterfactual growth rate under no climate impacts from the SSPs. The
evolution of decile-level average income with climate impacts is

𝑦𝑞𝑖𝑡 = (1 + 𝑔𝑞𝑖𝑡 + 𝛿𝑞𝑖𝑡)𝑦
𝑞
𝑖𝑡−1

with 𝛿𝑞𝑖𝑡 is the estimated climate impact factor, which differs across impact function spec-
ifications. It represents the reduction or increase in economic growth rate caused by devia-
tions from the optimal temperature. Damages and benefits are set to increase with projected
climate change as average country temperature increases. Under the BHM specification, 𝛿𝑞𝑖𝑡
is:

𝛿𝑞,𝐵𝐻𝑀
𝑖𝑡 = 𝛽1

𝑞
(𝑇 𝑒𝑚𝑝𝑖𝑡 − 𝑇 𝑒𝑚𝑝𝑖0) + 𝛽2

𝑞
(𝑇 𝑒𝑚𝑝2𝑖𝑡 − 𝑇 𝑒𝑚𝑝2𝑖0)

Under the KW specification, it is:
𝛿𝑞,𝐾𝑊
𝑖𝑡 = 𝛽0

𝑞
Δ𝑇 𝑒𝑚𝑝𝑖𝑡+𝛽1

𝑞
Δ𝑇 𝑒𝑚𝑝𝑖𝑡−1+𝛽2

𝑞
Δ𝑇 𝑒𝑚𝑝𝑖𝑡 ∗ 𝑇 𝑒𝑚𝑝𝑖𝑡−1+𝛽3

𝑞
Δ𝑇 𝑒𝑚𝑝𝑖𝑡−1 ∗ 𝑇 𝑒𝑚𝑝𝑖𝑡−1

Under the BHM-Adaptation specification, it is:
𝛿𝑞,𝐵𝐻𝑀−𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛
𝑖𝑡 = (𝑇 𝑒𝑚𝑝𝑖𝑡 − 𝑇 𝑒𝑚𝑝𝑖0)(𝛽

𝑞
1 + 𝛽𝑞

3𝑦𝑖𝑡−1) + (𝑇 𝑒𝑚𝑝2𝑖𝑡 − 𝑇 𝑒𝑚𝑝2𝑖0)(𝛽
𝑞
2 + 𝛽𝑞

4𝑦𝑖𝑡−1)

where 𝑇 𝑒𝑚𝑝𝑖0 is the 2015 level of temperature in the region 𝑖 and 𝑦𝑖𝑡−1 is the lagged
region-level per capita GDP under climate impacts, in logarithms. Note the compounding
of effects: climate change may reduce income levels and thus the ability to adapt, causing
larger relative damages as a consequence.
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Damages for each decile 𝑞 in time 𝑡 are then defined as the difference in per-capita income
levels between the projected 𝑦𝑞𝑖𝑡 under climate change and counterfactual 𝑦𝑖𝑡𝑞 without climate
impacts, relative to the counterfactual5 :

𝐷𝑞
𝑖𝑡 =

𝑌 𝑞
𝑖𝑡 − 𝑌 𝑞

𝑖𝑡

𝑌 𝑞
𝑖𝑡

We report our estimated global damages over time for all damage function specifications,
as implied by our empirical results, in Figure A.2 in Section A.2, where we also explain some
discrepancies with previous results on global projected damages. In short, by 2100, under
a 3.1°C warming scenario relative to the 1995-2015 average, global damages to per capita
GDP are projected to be around 9% of GDP under the BHM specification, 7.5% under the
BHM-Adaptation specification and about 2.4% of GDP under the KW specification (when
estimated with country-level data instead of the original sub-national level data)6. In the rest
of the paper, we focus on how those damages are projected to be distributed within countries,
displaying the results under our preferred specification. At the same time, one of our main
findings is that the conclusion that damages are projected to be regressive within countries
is robust to the choice of the damage function specification.

Moving from the global level to the decile-country level as represented in the RICE50+
model, in Figure 2, we display the overall incidence of projected climate damages from tem-
peratures across income deciles, for all countries. For each decile group, we include that
decile for all countries in our sample. Projected damages decrease with income within coun-
tries, with median impacts for D9 below 10% of per capita income and impacts for D10
centered just below 0. Projected damages under the BHM-adaptation specification are in-
stead close, on average, across the other deciles, which correspond to the relatively poorer
households. Moreover, the range and variance of projected damages across countries is larger
for the lowest deciles, D1 and D2, than for the other deciles. Figures A.4 and A.5 in Section
A.3 of the Appendix show that damages are projected to be regressive within countries for
all three considered damage functions.

Given the well-know regional heterogeneity in projected climate damages, as they de-
pend on current climates that vary across latitudes, in Figure 3 we display how the projected
regressive damages vary across countries. In panel (a), we plot the difference in percentage
points between projected damages for the poorest within each country (D1) and the richest

5Analogously, country-level damages are defined as 𝐷𝑖𝑡 =
𝑌𝑖𝑡−𝑌𝑖𝑡
𝑌𝑖𝑡

.
6In Figure A.8 in Section A.5, we display projected damages across four SSP-RCP scenarios for all three

damage functions.
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Figure 2: Projected decile-level impacts in 2100 under SSP3-7.0 scenario. Each dot repre-
sents the projected impact on decile-level income for a given income decile in one of the 154
countries of RICE50+. Dot placement is slightly perturbed for visualization purposes. The
solid black line connects the median of the distribution, for each decile, of projected impacts
across regions.
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(D10), so that a higher value implies that the relatively poor in that country are more ex-
posed to damages from rising temperatures and viceversa7. Figure 3a shows that the more
strongly regressive consequences for the distribution of incomes within countries will come
in the currently hotter and poorer parts of the world, as implied by Figure 1. The relatively
poor within countries are particularly more exposed than the relatively rich in Sub-Saharan
Africa, the Middle East, and South Asia, as well as parts of Central and South America, but
this is true for basically every country in our sample, Mongolia being the lone exception.

Figure 3b displays the consequences for the Gini index by country of our projected decile-
level climate impacts under the SSP3-RCP7.0 scenario, implying warming of +3°C by 21008.
Consistently with the findings displayed in the upper panel, higher temperatures are projected
to increase within-country inequality, as measured by the Gini index, for basically every
country in the world. The stronger negative consequences for an equal distribution of income
within countries are again projected to be seen in Sub-Saharan Africa and in the Middle East,
with a projected increase of up to 6 points in the index. This is broadly consistent with the
previous findings in Malpede and Percoco (2021), Paglialunga et al. (2022) and Cevik and
Jalles (2022), despite the different econometric models used.

The importance of accounting for the heterogeneous impacts of climate damages within
countries can be further underlined by decomposing the variance of the projected damages
at the decile-country level in 2100, which are displayed in the upper panel of Figure 4.

Following the definition of the variance of a variable 𝑌 ,

𝑉 𝑎𝑟(𝑌 ) = 𝑉 𝑎𝑟𝐸[𝑌 |𝑋]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Between 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+𝐸[𝑉 𝑎𝑟(𝑌 |𝑋)]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Within 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

we find that the within-country (so across income deciles) variance of projected damages
in 2100 accounts for approximately 24% of the total variance, with the rest coming from
between-country variance in projected damages.

Figure 4 clarifies this further. The upper panel plots the projected-damages for all decile-
country observations in 2100 (so ten observations per country) against the projected damages
to per capita income, as defined above, by decile-country. The negative slope is implied

7in Figure A.3 in Section A.3 we display projected damages in 2100 to per capita income for all deciles in
all countries, for completeness

8Figure A.9 in Section A.5 displays the projected increase in global Gini across four SSP-RCP scenarios.
To compute the global Gini for that figure, we first compute the projected change in country-level Gini under
a warming scenario relative to the counterfactual and then compute a weighted average by population across
countries.
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Figure 3: Differences in damages between D1 and D10 (top) and impact of climate change
on the Gini index (bottom) by 2100 under SSP3-RCP7.0.
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Figure 4: Between and within-country damage incidence by 2100 under SSP3-RCP7.0.

by the overall regressivity of projected damages at the global damages, so that the world’s
poorest households suffer the largest projected damages and viceversa. This regressivity is
composed of two parts: the between-country component and the within-country component.
The between-country component comes from the fact that today’s poorest countries are also
those that are projected to suffer the most negative consequences from climate change (which
has already been shown in several studies, including Burke et al. (2015) and Kalkuhl and
Wenz (2020) since poor countries tend also to be in hot climates). The bottom-right panel of
Figure 4 displays this relation under our preferred econometric specification of the damage
function. The within-country component is specific to the incidence of climate damages
within countries and is the contribution of this paper. The bottom-left panel of Figure 4
displays this relation, which captures the income elasticity of damages within countries. In
the next section we delve further into the estimation of this elasticity.
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6 The income elasticity of climate impacts

The income elasticity of climate impacts - how responsive relative damages are to a change
in income along the income distribution within countries - has important implications for
the socially optimal climate policy, for poverty and political economy considerations, and
ultimately for the Social Cost of Carbon (Dennig et al., 2015). Following the notation of
Dennig et al. (2015), the damage share of the 𝑞th decile in country 𝑖 depends on its income
share within the country (or in their case, region), and on an impact elasticity parameter 𝜉:9

𝐷𝑞
𝑖𝑡

𝐷𝑖𝑡
= 𝑎𝑖

(𝑌 𝑞
𝑖𝑡

𝑌𝑖𝑡

)𝜉 . (4)
Damages are proportional to income (i.e. distribution-neutral) when 𝜉 = 1, and fall

disproportionately on the poor when 𝜉 < 1 and on the rich when 𝜉 > 1. Taking logs and
substituting 𝑙𝑛(𝑎𝑖) = 𝛼𝑖, we obtain a log-linear equation with which we can recover 𝜉 through
a standard OLS regression:

𝑙𝑛
(𝐷𝑞

𝑖𝑡

𝐷𝑖𝑡

)

= 𝛼𝑖 + 𝜉𝑙𝑛
(𝑌 𝑞

𝑖𝑡

𝑌𝑖𝑡

)

+ 𝜖𝑞𝑖 (5)

where 𝜖𝑞𝑖 is a random error term.10 Using the projected damages at the decile level over
time and across countries, we can thus estimate the income elasticity based on our estimated
impact function. That is, we use 𝐷𝑞

𝑖𝑡

𝐷𝑖𝑡
and 𝑌 𝑞

𝑖𝑡

𝑌𝑖𝑡
from the projections calculated in Section 5

and estimate 𝜉.
Since 𝐷𝑞

𝑖𝑡

𝐷𝑖𝑡
may be negative for some decile-country-year observations, i.e., they see in-

come benefits from rising temperatures- because their climates start from a temperature to
the left of their estimated optimal temperature (so that they are on the upward-sloping part
of the curve) we take the absolute value of the projected decile impacts. In Section A.4,
we show that our estimates of the income elasticity of climate impacts are robust to exclud-
ing those observations with negative damages (climate benefits), and to the choice of fixed
effects.

We estimate the Equation 5 and present the income elasticity of impacts for different
functional forms of the damage function in Table 3. While global projected damages are

9Here, 𝑎𝑖 represents a scaling factor per country, which is computed such that the damage shares add up to
one across deciles, as in Dennig et al. (2015).

10Notice that if we multiplied the fraction 𝐷𝑞
𝑖𝑡

𝐷𝑖𝑡
on the left-hand side of (5) by 𝑌 𝑞

𝑖𝑡
𝑌 𝑞
𝑖𝑡

𝑌𝑖𝑡
𝑌𝑖𝑡

, we could recover an
estimate of 𝜉 − 1. This would imply that an income-neutral distribution of climate impacts is characterized by
a horizontal line of slope 0, which is what we do in figure 4 for visualization purposes.
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sensitive to the choice of the function as shown in Newell et al. (2021) and in Figure A.2, the
income elasticity of damages is not as sensitive. In particular, projected climate damages are
shown to be regressive across all three considered impact function specifications. This in-
come elasticity parameter is estimated at 0.84 under BHM, 0.72 under the BHM-Adaptation
specification, and 0.69 under the KW specification. All three estimates of the elasticity are
furthermore significantly different from 1 (with 𝑝 < 0.001). This implies that projected
climate impacts can be summarized as being overall regressive within countries, with the
poorer parts of the country suffering a relatively higher burden of those impacts, regardless
of the choice of the damage function.

Table 3: Estimates of the income elasticity of climate damages.

Dependent Variables: Relative impacts - BHM Relative impacts - BHM adapt. Relative impacts - KW
Model: (1) (2) (3)
Variables
Relative income 0.8417∗∗∗ 0.7186∗∗∗ 0.6927∗∗∗

(0.0052) (0.0018) (0.0042)
Fixed-effects
Time Yes Yes Yes
Country Yes Yes Yes
Fit statistics
Country 23,680 23,680 23,680
R2 0.58666 0.39805 0.47163
Within R2 0.53661 0.31805 0.36948
Clustered (Time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The dependent variable is the share of damages of a decile with respect to its country’s total damages,
calculated in the previous section.
The independent variable is the share of income of a decile with respect to its country’s total income.
The unit of analysis is country-decile. Regressions include year-fixed effects and country-fixed effects.

We then explored potential heterogeneity across countries in the estimated income elas-
ticity of damages. We did so by estimating a separate 𝜉 parameter with observations from
that country only. Focusing on the BHM-Adaptation specification, Figure A.7 in Section A.4
shows the distribution of the country-specific income elasticity of impacts. In order to study
what characteristics of countries can explain the variation of the estimated income elasticity
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Table 4: Estimates of the income elasticity of climate damages, under the BHM-Adaptation
specification, by sub-samples.

Above med. GDP Below med. GDP Above med. temperature Below med. temperature
Dependent Variable: Relative impacts
Model: (1) (2) (3) (4)
Variables
Relative income 0.8116∗∗∗ 0.6275∗∗∗ 0.4310∗∗∗ 1.100∗∗∗

(0.0616) (0.0430) (0.0349) (0.0447)
Fixed-effects
Country Yes Yes Yes Yes
Time Yes Yes Yes Yes
Fit statistics
Country 12,160 11,520 11,840 11,840
R2 0.39045 0.42688 0.51771 0.44234
Within R2 0.30594 0.35731 0.41152 0.38161
Clustered (Country) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

parameter in the cross-section, we divided the countries in RICE50+ into two sub-samples,
by per capita GDP and by annual mean temperature. As shown in 4 and as it follows from our
empirical results in section 4, we found that damages are more regressive in poorer countries
(those with a below-median per capita GDP, 𝜉 = 0.63) as well as in hotter countries (those
with below median annual temperature, 𝜉 = 0.43).

Finally, we study whether and how the 𝜉 parameter varies over time in selected coun-
tries. We can estimate a separate 𝜉 for each country-year combination with 10 observations,
given by the relative income and projected impacts for those deciles in that country-year.
Figure A.6 in Section A.4 shows that the income-elasticity (the blue line of best fit across
observations within each cell) is very stable over time for all considered countries.

7 Conclusion

We study empirically how changing temperatures have had differentiated economic impacts
on households, here disaggregated by income deciles within countries. We have shown that
projected climate impacts from rising temperatures will fall more heavily on the poorest
within countries and that this finding is robust to the choice of the impact function. We
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use our estimates of projected economic impacts by income decile and region to obtain an
empirical estimate of the income elasticity of the damage parameter. While there is signifi-
cant regional heterogeneity, our central estimate implies regressive damages with an income
elasticity of 0.72, while impacts can also be slightly progressive, at an average value of 1.1
(in relatively cold countries) up to being very regressive at 0.43 (in relatively hot countries).
These results also indicate the importance of between-country inequality and heterogeneity,
which we estimate to make up around three-quarters of the total inequality effect of climate
change.
Several caveats and additional research directions remain based on these results. First, in
this paper, we analyzed the distributional consequences of impacts from temperature only.
It does not follow that future impacts from other dimensions of the climate- such as rainfall,
humidity, and extreme weather events- will necessarily have the same consequences on the
distribution of income within countries. Similarly, damages that have been limited or have
not occurred in the past (e.g., sea level rise, ecosystem tipping points) are not factored in
our analysis and may have uneven consequences along the income distribution within and
between countries. Secondly, with regard to inequality, dimensions other than income or
consumption would be important to identify impacts for different socioeconomic subgroups.
Third, country-level data assumes homogeneous spatial distribution of the income deciles
within a country. A more spatially fine-grained analysis, for instance, at the sub-national
level, would be relevant to address this simplification and to identify spatial hot spots. Fi-
nally, capturing adaptation through average income levels representing private and public
adaptive capacity is a simple proxy, and including more specific adaptive capacity indices
or variables could provide a better measure of actual adaptive capacity and their effect on
residual climate impacts.
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A Appendix

A.1 Damage functions - robustness checks
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Table A.1: Damage functions, BHM with adaptation

Base Linear trends Quadratic trends
Dependent Variable: GDP pc growth
Model: (1) (2) (3) (4) (5)
Variables
Temperature 0.1085∗∗∗ 0.1167∗∗∗ 0.1032∗∗∗ 0.1118∗∗ 0.1515∗∗∗

(0.0201) (0.0147) (0.0202) (0.0532) (0.0214)
Temperature, Squared -0.0027∗∗∗ -0.0030∗∗∗ -0.0028∗∗∗ -0.0028∗∗ -0.0034∗∗∗

(0.0006) (0.0005) (0.0006) (0.0011) (0.0007)
Temperature X GDP, 𝑡 − 1 -0.0099∗∗∗ -0.0145∗∗∗

(0.0021) (0.0023)
Temperature Sq. X GDP, 𝑡 − 1 0.0002∗∗∗ 0.0003∗∗∗

(7.27 × 10−5) (8.46 × 10−5)
Temperature × 5-year avg. GDP -0.0111∗∗∗

(0.0013)
Temperature, Squared × 5-year avg. GDP 0.0003∗∗∗

(4.89 × 10−5)
Temperature × 10-year avg. GDP -0.0097∗∗∗

(0.0019)
Temperature, Squared × 10-year avg. GDP 0.0003∗∗∗

(6.85 × 10−5)
Temperature × avg. GDP -0.0103∗∗

(0.0051)
Temperature, Squared × avg. GDP 0.0003∗∗

(0.0001)
Fixed-effects
Country Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
Varying Slopes
Year (Country) Yes Yes Yes Yes Yes
Year2 (Country) Yes Yes
Fit statistics
Observations 7,064 6,743 5,989 7,064 7,064
R2 0.30148 0.32707 0.29681 0.25665 0.37668
Within R2 0.10810 0.06979 0.07516 0.05087 0.13087
Clustered (Country) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A.1: Decile damage functions, with 90% confidence intervals at low, middle and
high-income levels.

A.2 Comparing impacts with previous literature

Using novel subnational data, Kalkuhl and Wenz (2020) (KW) estimate the effect of temper-
ature on Gross Regional Product (GRP), which they model as a function of both temperature
changes and levels. We re-estimate KW with country-level data and project damages under
SSP3 - RCP 7.0 (global warming of 3.1°C relative to the average between 1995 and 2015).
By the end of the century, damages amount to approximately 2.4% of global per capita GDP.
By contrast, using estimates from sub-national data, KW project damages of 7–14% under
SSP2- RCP 8,5. The discrepancy should not necessarily come as a surprise, as the coeffi-
cients from a subnational analysis may not be directly ported to country-level damages. First,
the number of sub-national units is not constant across countries; hence estimates reflect a
different average effect. Second, the sum of subnational impacts need not coincide with
country-level impacts if within-country spillovers or adaptation (e.g., through trade) exist.
Figure A.2 plots the trajectory of projected damages under the quadratic form of Burke et
al. (2015), the extension allowing for adaptation, and under the functional form of KW. We
recover closely comparable damage estimates to KW’s original paper, under a slightly differ-
ent scenario (SSP3 - RCP 7.0 instead) when using their original coefficients and apply them
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to our country-level projections of temperature and GDP. Moreover, we obtain comparable
damages to Burke et al. (2015) (≈17% damages at the global level) when using SSP5 - RCP
8.5 (the same warming scenario as in their original paper). Additional differences may come
from updated real per capita GDP data from the World Bank, as well as updated weather
data from the Climate Research Unit at the University of East Anglia.

Figure A.2: Projected global damages as a share of global GDP. Damages are calculated
from growth projections coming from RICE50+.

A.3 Projected distributional impacts - additional results
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Figure A.4: Projected decile-level impacts in 2100, under the BHM specification. Each dot
represents the projected impact on decile-level income for a given income decile in one of
the 154 countries of RICE50+. The solid black line connects the median of the distribution,
for each decile, of projected impacts across countries.
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Figure A.5: Projected decile-level impacts in 2100, under the KW specification. Each dot
represents the projected impact on decile-level income for a given income decile in one of
the 154 countries of RICE50+. The solid black line connects the median of the distribution,
for each decile, of projected impacts across countries.
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A.4 Income elasticity of impacts

Figure A.6: Income Elasticity of impacts over time, selected countries
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Figure A.7: Income Elasticity of impacts across countries

41

Electronic copy available at: https://ssrn.com/abstract=4520461



A.4.1 Robustness to choice of fixed effects

Table A.6: Income elasticity of impacts, under BHM specification

Dependent Variable: Relative climate damages
Model: (1) (2) (3) (4)
Variables
Relative income 0.8407∗∗∗ 0.8418∗∗∗ 0.8405∗∗∗ 0.8417∗∗∗

(0.0055) (0.0055) (0.0249) (0.0052)
Fixed-effects
Time Yes Yes
Country Yes Yes
Fit statistics
Country 23,680 23,680 23,680 23,680
R2 0.49583 0.49674 0.58575 0.58666
Within R2 0.49668 0.53567 0.53661
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A.7: Income elasticity of impacts, under BHM - Adaptation specification

Dependent Variable: Relative climate damages
Model: (1) (2) (3) (4)
Variables
Relative income 0.7195∗∗∗ 0.7179∗∗∗ 0.7202∗∗∗ 0.7186∗∗∗

(0.0073) (0.0021) (0.0380) (0.0018)
Fixed-effects
Time Yes Yes
Country Yes Yes
Fit statistics
Country 23,680 23,680 23,680 23,680
R2 0.29222 0.29469 0.39558 0.39805
Within R2 0.29180 0.31841 0.31805
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A.8: Income elasticity of impacts, under KW specification

Dependent Variable: Relative climate damages
Model: (1) (2) (3) (4)
Variables
Relative income 0.6891∗∗∗ 0.6883∗∗∗ 0.6935∗∗∗ 0.6927∗∗∗

(0.0066) (0.0053) (0.0222) (0.0042)
Fixed-effects
Time Yes Yes
Country Yes Yes
Fit statistics
Country 23,680 23,680 23,680 23,680
R2 0.31817 0.31880 0.47100 0.47163
Within R2 0.31762 0.37003 0.36948
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

44

Electronic copy available at: https://ssrn.com/abstract=4520461



A.4.2 Robustness to excluding positive climate impacts

Table A.9: Estimates of the income elasticity of climate damages, excluding positive climate
impacts

Dependent Variables: Relative damages - BHM Relative damages - BHM adapt. Relative damages - KW
Model: (1) (2) (3)
Variables
Relative income 0.8496∗∗∗ 0.6951∗∗∗ 0.6987∗∗∗

(0.0053) (0.0053) (0.0055)
Fixed-effects
Time Yes Yes Yes
Country Yes Yes Yes
Fit statistics
Country 22,552 21,494 22,230
R2 0.66825 0.42652 0.52768
Within R2 0.63344 0.34943 0.45451
Clustered (Time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

A.5 Global results across scenarios

Figure A.8: Global damages, all RCP-SSP scenarios
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Figure A.9: Global Gini impacts, all RCP-SSP scenarios

46

Electronic copy available at: https://ssrn.com/abstract=4520461


	Introduction
	Empirical strategy
	Data
	Empirical results
	Projected distributional impacts
	The income elasticity of climate impacts
	Conclusion
	Appendix
	Damage functions - robustness checks
	Comparing impacts with previous literature
	Projected distributional impacts - additional results
	Income elasticity of impacts
	Robustness to choice of fixed effects
	Robustness to excluding positive climate impacts

	Global results across scenarios


